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Abstract

A skyrmion model of nano-domain ejection from large domain walls in
ferroelectrics is presented, together with data on lead germanate PbsGes;Oy;
and comparison data on ferromagnetic iron garnet. Notable is the occurrence
of a short-wavelength transverse wall instability (wiggles) prior to the nano-
domain emission. This nonlinear, defect-free model is qualitatively different
from all known models of ferroelectric nucleation and propagation; nucleation
in ferroelectrics has almost always been viewed as inhomogeneous, initiated
at static impurity or defect sites that are fixed in space; the present model
is also inhomogeneous but involves nucleation at existing domain walls,
which are dynamic and not fixed in space. This defect-free ferroelectric
nucleation model contrasts with the frequently invoked mechanism in thin-
film switching of nucleation at electrode—dielectric interfaces and thus has
significant implications for the ultimate switching speed in thin-film memory
devices.

Skyrmions have not previously been applied to the problem of nucleation in ferroelectrics. In
the present letter we use skyrmions to model high-field nucleation and test our predictions
regarding nucleation sites with new experimental data.

Shur et al [1] discovered that in lead germanate (PbsGe3;O;;), where 180° domains are
optically distinct due to electro-gyration, at high applied electric fields E(>150 kV cm™!),
nano-domains are nucleated in front of an advancing macroscopic domain wall (figure 1(a));
figure 1(b) shows the distribution of nano-domain distances from the main domain wall after
a time t = 40 ms. A very similar effect was reported in ferromagnets by Randoshkin et al
[2] in a single-crystal film of iron garnet (figure 2). It is important to note in both figures 1(a)
and 2 that the macroscopic domain wall surface becomes wavy just below the nano-domain
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Figure 1. (a) Nano-domains in lead germanate near a large domain wall 40 ms after application of a
field of ca. 100 kV cm ™! [1] with micrograph scale roughly 100 xm cm™!; (b) graphed distribution
of nano-domains from (a) versus distance in microns from the domain wall.

emission threshold; the walls at lower fields and velocities are quite flat. Therefore the nano-
domain ejection from the wall has a precursor in the domain wall curvature. In magnets
the phenomenon is modelled via a spin-wave formalism based upon the gyrotropic model of
domain wall motion in uniaxial materials. When an applied magnetic field is sufficiently strong
to exceed the Walker threshold, the magnetization vectors in the domain wall begin to precess
around the applied field H with frequency w = y H, where y is the effective gyromagnetic
ratio. By relating the precession frequency in the domain wall with the spin frequency in the
domain, accurate predictions can be made for the threshold field at which the effect begins.
We note that the domains nucleated in front of the large domain wall may be regarded as
vortex-like skyrmions. The suggestion that follows then is that the domain wall phenomena in
lead germanate might also be described by a gyrotropic model. Lead germanate has a strong
gyrotropy (optical activity) associated with its ferroelectricity and its threefold helical C3 point
group symmetry, which is probably not coincidental in the context of nano-domain nucleation.

The modern theory of ferroelectricity, due primarily to Resta [3] and King-Smith and
Vanderbilt [4], expresses ferroelectric polarization as the observable quantity in a geometrical
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Figure 2. Nano-domains ejected from the ferromagnetic domain wall in iron garnet at different

fields H and times 7 [2]. Coordinates are real space; the scale on the micrographs is ca. 10 m cm ™.

quantum phase. Resta treats this Berry phase via a vector potential, and the polarization is
given as the surface integral of the curl of this vector potential, as an application of Stokes’s
theorem. Although the Berry phase was originally developed only for cases with electric field
E =0, it has recently been extended to insulators with nonzero field [5].

Domain walls in ferroelectrics are modelled as solitons, for example as those from a double
sine—Gordon equation [6]. However, these models normally do not allow for vorticity, or
topological charge [7, 8]. An extra term must be added to the Lagrangian for this, as first
suggested by Skyrme [9]. Kudryavstev et al [10] developed a scheme by which topological
charge is included in a (24 1)-dimensional vector O(3)-sigma model, spontaneously broken to
0O(2) x Z,, by addition of terms to the Lagrangian that permit stable skyrmion solutions. These
authors mention that their Lagrangian (without the Skyrme term) can be derived from that of
Pouget and Maugin [6]. In the present work we try to apply their model with the Skyrme term
to a ferroelectric, thus creating ferroelectric skyrmions. In the paper by Kudryavstev et al they
consider the situation where solitons with some degree of vorticity on the domain wall interact
with each other to eject skyrmions in front of the domain wall. For there to be skyrmion
emission in a ferroelectric there must be a threshold equivalent to the Walker threshold in a
ferromagnet. Hence it is explicitly a nonlinear problem.

Lead germanate

The ferroelectric effects reported [1] are relatively slow, occurring on a millisecond timescale,
as opposed to microseconds or nanoseconds. Typically, within # < 40 ms nano-domains are
ejected 10-200 pm from the existing macroscopic domain wall. Figure 3 graphs a distribution
of nano-domain numbers versus ejection distances at + = 40 ms. The nano-domains themselves
are of order 10 um in diameter, although this value is an upper limit on actual size that may
depend upon both optics used and local strains around the nano-domains. The nano-domains
themselves are cylindrical in shape with long axis along z and viewed through transparent
electrodes in the experiments as circular cross-sections. The time resolution reported [1] is
insufficient to determine whether the newly created nano-domains are formed at a distance
ca. 30-200 pum from the advancing wall (as hypothesized in [1] and attributed to a 50 um
screening length) or are formed at the wall and ejected at high speeds (figure 2). Figure 1(b)
shows that the nano-domains are unlikely to nucleate at a fixed distance (due, for example, to
a screening length) from the large domain wall; in such a case their distribution should peak at
this distance. New experiments, discussed below, show that, unlike data at low fields where
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Figure 3. Bulging in domain walls predicted as transverse instabilities in [16] coordinates are real
space; dimensions are arbitrarily adjustable according to parameters in the model.

nucleation occurs reproducibly at the same defect sites, this nucleation is not only arising
from within existing domains, but occurs at spatially random sites with each voltage pulse.
Instead we see that the distribution is monotonically decreasing from the wall, approximately
exponentially, which is compatible with nano-domain ejection from the wall. The nano-
domains have a lateral spatial distribution indicative of repulsion between nano-domain pairs,
which is compatible with the substrate-mediated strain model of Andreev [11] and with the
self-assembly data of Dawber et al [12] in other ferroelectrics.

Ferromagnets

Thresholds: in iron garnet the threshold for skyrmion domain ejection is [2] ca. 170 Oe, at
which field the transverse instability (wiggles) arise after ca. 700 ns. At higher fields of 335 Oe,
the instability becomes visible at ca. 200 ns and the first skyrmion nano-domain is ejected at
ca. 300 ns. The nano-domain appears at about 10 um from the wall after 300 ns at 335 Oe;
an individual nano-domain can be tracked over 5 um between nucleation at the wall at 400 ns
and a time 100 ns later, yielding a nano-domain velocity of ca. 50 m s~!. In ferroelectric lead
germanate the domain wall velocity in samples with vertical growth layers is 230 ms~! at
E = 420kVcem™ (T = 300 K) and 14 m s™! for horizontal growth layers; note that these
numbers are comparable to the magnetic nano-domain ejection velocity inferred above for iron
garnet. In lead germanate the bulk domain wall velocity increases exponentially with field, and
the threshold for nano-domain emission is ca. 150 kV cm™!. These velocities are all subsonic,
so the phenomenon is apparently unrelated to the Cerenkov-like effects (coherent emission
of acoustic phonons at a phase-matched angle to the domain wall propagation) observed for
supersonic magnons [13]. The time required for domain formation in lead germanate is
discussed in [14].

Chirality

Firstly, we note that domain walls in ferroelectrics and in ferromagnets are often chiral, even
when there is no chirality in the bulk material. This problem is well reviewed by Coullet et al
[15], with emphasis upon non-equilibrium systems (such as the ferroelectric switching in a
large external field of interest to us) and applied to the particular case of ferroelectrics with bi-
quadratic coupling between two order parameters by Houchmandzadeh et al [16]. The effect of
chirality in the transitions between Ising walls and Bloch walls in magnets was first discussed
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by Bulaevski and Ginzburg [17]. The important point of [10] in this context is that the domain
wall (see figure 3) develops bulges prior to the onset of skyrmion-like ejection of nano-domains.
One bulge is shown in figure 3. In reality there will of course be many bulges, resulting in the
wiggles or transverse instability illustrated in figure 2. Thus, the bulges are precursors to the
nano-domain emission. The presence of such bulges is probably typical in ferroelectric oxide
domains; for example, Triscone showed [18] that the fractal dimensionality D of domain walls
in perovskite oxide ferroelectrics is typically 2.5 and not the planar 2.0.

The theory developed [19] is applicable only to the case of systems with two coupled
order parameters, 7; and 7. In such a situation the symmetry of the bulk ferroelectric need
not be chiral; the bi-quadratic coupling and the presence of a Lifshitz invariant of form § =
N1 dn,/dx — n, dn are sufficient for chirality within the domain walls. This is not an unusual
case, but it is not the situation in lead germanate, which is a simple uniaxial ferroelectric.
Therefore, in the case of lead germanate the chiral symmetry of the bulk ferroelectric is actually
required, because there is no second order parameter. We note that many other ferroelastics and
ferroelectrics have helical chiral structures, such as the D3 point-group alpha-quartz structure
of SiO, and berlinite AIPOy or the helical structures of the K,SeO,4 family of incommensurate
insulators.

Kudryavtsev—Piette—Zakrzewski model

The (2D) Lagrangian developed by these authors is of the form
L = F[(1/2)0.¢9%¢ — (k*/4)(ap x 0p) (3¢ x 9°¢p) — (1*/2)(1 — $3)] (1)

(where y is along the domain wall and x normal to the wall) and results in small amplitude
waves propagating along the wall (the waviness shown in figure 1) of amplitude g(x, y, t) (NB
two-dimensional waves independent of z, the normal to the crystal surface)

8 — 8xx — 8yy + w1 —2/cosh2(ux)]g =0 )

and skyrmion emission (chiral instability) from within a domain wall in a direction x normal to
the wall; skyrmions are created as a superposition of a deformation and a topological wave:

w = exp{—u[x — (B/2) tanh(uy + ut — nA) — tanh(uy — ut + nA)] x exp((imr/2)
x [tanh(uy 4+ ut — pA — uD) + tanh(uy — ut + pA + uD) +2)}.  (3)

The time sequence shown in figure 4 is that for A = 30, B = 20, and D = 10 in
equation (3), and corresponds reasonably well to data in figure 1, which occurs after the bulges
shown in figure 3 develop. The nano-domain moves away from the larger wall at a speed which
is half that of ripples along the wall, a prediction suitable for future testing in lead germanate.
The theoretical model is more similar to the experimental data shown for iron garnet in figure 2.
These comparisons suggest that the nano-domains in lead germanate (figure 1) do not nucleate
at a distance from the large domain wall governed by depolarization fields, but rather originate
within the wall and are ejected. If this is the case, it represents a completely new kind of
nucleation in ferroelectrics: ferroelectric nucleation is almost always viewed as inhomogeneous
with only a few exceptions [19, 20] on defect sites or interfaces; in the present situation it is
inhomogeneous but nonlinear, arising at a threshold velocity, and in the complete absence of
defects. This is further supported by the graph (figure 1(b)) of number of nano-domains versus
distance from the wall of the advancing large domain. If these nano-domains nucleated at
a fixed distance from the wall, this graph should exhibit a peak, whereas if the domains are
ejected from within the wall the graph should be monotonically decreasing (as shown).



L76 Letter to the Editor

(a) 60 (b)

50
40
30
20
10
0

10 = -10

= 20

- 30

—~ -40

= -50

Figure 4. Change in shape in domain wall just before and after a skyrmion is emitted [10]. Axes
are real space and units correspond approximately to um in the case of lead germanate.

Gross—Pitaevski model

Peripheral to the discussion above concerning nonlinear transfer of domain wall energy is the
idea that domain wall energy can be transferred via damping into acoustic phonons near the
Brillouin zone boundary with abrupt thresholds. Indeed, this is the model of Dawber ez al [21]
in the ‘perimeter effect’. We point out here that in a different context this is the Gross—Pitaevski
model of general decay into a boson sea. See the theoretical developments by Frisch ef al [22]
The abrupt decay of domain wall energies as a function of frequency at high fields was recently
reported experimentally in barium titanate by Zolotoyabko et al [23], but not interpreted in
terms of any specific microscopic mechanism.

Classical model

Without dwelling upon the nonlinear dynamics or Lagrangians that follow the development
of bulges or ripples in figure 3, we might first ask whether there is a simple mechanical
model useful for estimating the threshold for creating such ripples. One of us has suggested
elsewhere [24] that when the domain wall velocity exceeds the speed of domain wall ripples
(transverse distortions) a new relaxation process sets in. Since the ripple velocity V is given by

V = (Tk/p), )

where T is the surface energy of the domain wall (ca. 7 ergs cm ™~ in most ferroelectric oxides);

p is density (ca. 7 gcm™3); and the wavevector k = 2 /A is determined visually from
figure 1(a) from A = ca. 100 um. This gives a critical velocity v of order 10 cms™', in
agreement with [1], analogous to Cerenkov radiation or bow waves on a ship. Thus, although

the phenomenon is not related to domain wall velocities approaching the speed of sound, there
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Figure 5. Nucleation in lead germanate with an initial voltage pulse (left) and subsequent pulse(s)
(right), showing that the nucleation sites are not repeatable. Therefore, they do not occur at
static defect sites. The dark areas are polarized down and an electric field is applied to reverse
polarizations; the reversed ‘up’ domains appear as white.

may be other critical velocities in the problem related to ripple speed on macroscopic domain
walls.

New experiments

A sample of PGO lead germanate crystal (polished plane parallel plate of about 300 pm thick)
has been mounted on a metal plate using silver paint. The opposite surface of the sample
has been inspected by piezoresponse microscopy (PFM). All PEM measurements have been
performed using a commercial atomic force microscope (Park Scientific Instruments Autoprobe
MS). A computer-controlled Keithley 236 source measure unit was used to apply switching
voltage pulses to the PGO sample via a Pt coated Si cantilever (5 Nm™' force constant,
MikroMasch). The same tip was used for domain imaging by applying a 10 kHz modulation
voltage of 2.5 V (rms).

Figure 5(a) shows a PFM image of the PGO sample where two domains have been written
by application of 25 V voltage pulses (two 1 s pulses have been used to write the upper domain
of ~300 nm in diameter and 4 pulses, 1 s each, have produced the lower domain of about
500 nm in diameter). Both domains exhibit sharp domain boundaries as is usually observed
in PFM switching experiments, indicating a domain growth via progressive movement of
the domain walls. Figure 5(b) shows a sample area where a domain has been produced by
application of three 75 V, 1 s pulses applied to the same point. In this case, the domain exhibits
irregular shape with blurry domain boundaries.

This figure shows that unlike earlier data [1] at low fields and slow (or dc) fields,
application of higher fields at higher frequencies leads to nucleation at unreproducible sites.
This strongly supports the present skyrmion model, which does not require defect sites for
inhomogeneous nucleation.

Summary

Nucleation of ferroelectric domains in other systems has been shown to strongly favour
nucleation sites on existing antiphase boundaries [25] rather than at impurity sites or electrode
interfaces. Thus, lead germanate is not expected to be unusual in these respects, nor are
the models limited to its symmetry class. The rapid nucleation of nano-domains in front
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of an advancing macroscopic domain wall will produce a snow-plough effect that at high
fields could mimic supersonic domain wall velocities, whereas real phase velocities of domain
walls can remain subsonic. Furthermore, it has recently been demonstrated [26] that the
original Kay—Dunn theory [27] of nucleation can be justified for inhomogeneous nucleation,
in contrast to the original [27] homogeneous framework, such that the dependence of coercive
field E.(d) upon thickness d is satisfied with E.(d) = Ad >/ over many decades of
thickness down to sub-nanometre [28]. The present work may thus permit some insight into
possible microscopic behaviour of coercive fields at very small thickness (nanometre films),
important for optimizing and understanding the ultimate switching speed in ferroelectric thin-
film memories, for which the fastest measured speed is 280 ps [29], a factor of two smaller
than the theoretical estimate [30]; such a factor might conceivably be explained by the ‘snow-
plough’ effect of skyrmion emission of nano-domains in front of advancing domain walls.
Atomic force microscopy experiments [31] have supported the basic prediction of the skyrmion
model, that nucleation, albeit inhomogeneous, does not occur at reproducible sites and hence
is not defect initiated.

Work supported by EPSRC. We thank Pavel Zubko for preparing figure 1(b) and W Zakrzewski
and B Piette for helpful discussions. We especially thank B J Rodriguez for his work on the
data in figure 5.
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